

УДК 633.854.78:631.527.5 DOI 10.25230/conf11-2021-124-130

ОЦЕНКА ГИБРИДОВ ПОДСОЛНЕЧНИКА КРУПНОПЛОДНОГО НАПРАВЛЕНИЯ ПО ХОЗЯЙСТВЕННО-ЦЕННЫМ ПРИЗНАКАМ

Фукалова М.С., Бочкарев Б.Н. ФГБНУ ФНЦ ВНИИМК fms1506@yandex.ru

В результате оценки выделили экспериментальные гибриды ВК905 А \times Л₁₇1465, превосходящий стандарт по массе 1000 семян, и ВК934 А \times Л₁₇1465 — по урожайности. У большинства изученных гибридных комбинаций наблюдали положительный гетерозис и положительное доминирование массы 1000 семян, по признаку лузжистость семян в основном преобладал отрицательный гетерозис.

Ключевые слова: селекция, подсолнечник, гибриды, урожайность, крупноплодность, масса 1000 семян, лузжистость, объёмная масса (натура).

<u>Введение.</u> В настоящее время культурный подсолнечник *Helianthus annuus* L. имеет два основных направления селекции: масличное и кондитерское. Главным критерием для кондитерских гибридов является: урожай семян, содержание протеина в семенах, масса 1000 семян, размер семян, лузжистость [1; 2].

Потребности рынка и производство кондитерских изделий из ядер семян подсолнечника стабильно растет как в мире, так и в Восточной Европе вследствие его пищевой ценности для человека [3].

Важнейшим хозяйственно-ценным признаком подсолнечника является масличность семянок, которая определяется относительным содержанием масла в семенах (ядрах семянок) и долей плодовых оболочек от веса семянок (лузжистостью). Эти два показателя варьируют как под влиянием условий внешней среды, так и наследственных особенностей растения. Лузжистость семянок больше зависит от генотипа растений и в меньшей степени подвержена влиянию условий внешней среды [4].

Преобладающим типом наследования массы 1000 семян является частичное доминирование, в то же время полное доминирование и положительный гетерозис также встречаются [5; 6]. Другие исследователи отмечают, что наследование массы 1000 семян у подсолнечника определяется различными эффектами взаимодействия генов, зависит от генетического потенциала родительских компонентов гибридов [7]. Леоновой Н.Н., Кириченко В.В., Сивченко А.А. (1937) установлено, что характер наследования массы 1000 семян в F₁ определяется величиной данного признака у родительских линий. При получении крупноплодных гибридов наблюдали доминирование лучшей родительской формы или же гетерозис [8].

Известна высокая отрицательная корреляция между лузжистостью и масличностью [9]. Считается, что показатели масличности и лузжистости находятся под сложным полигенным контролем и имеют высокие коэффициенты наследования. Это позволяет проводить эффективный отбор в популяциях по данным признакам [10].

Важным показателем для характеристики урожая крупноплодных гибридов является натура семян. Натурой принято называть вес одного литра семян, выраженный в граммах. Натура во многом зависит от формы семян, размера и их выполненности (расположения ядра внутри плодовых оболочек). Существует неправильное представление о том, что чем больше семена приближаются к форме шара, тем выше их натура. Н.Н. Ульрих показал ошибочность такого мнения. Он утверждал, что высокую натуру дают семена, способные при свободном пересыпании давать наиболее плотную укладку, а шаровидная форма в этом отношении не является лучшей. Высокая крупность семян, как правило, вызывает снижение натуры [9].

Известный интерес для селекционеров представляет вопрос о сцеплении и независимом наследовании признаков в популяции подсолнечника. Было установлено, что такие козяйственно важные признаки как лузжистость и продуктивность, лузжистость и масса 1000 семян, лузжистость и содержание жира в ядре, масса 1000 семян и содержание жира в семени, масса 1000 семян и содержание жира в ядре, содержание жира в ядре и продуктивность почти всегда наследуются независимо. Исключения — лузжистость и содержание жира в семянке, масса 1000 семян и продуктивность, которые наследуются сцеплено. Однако, благодаря положительной корреляционной связи между массой 1000 семян и продуктивностью и отрицательной связи между лузжистостью и содержанием жира в семянке, сцепленное наследование этих признаков не препятствует целям селекции и позволяет вести эффективный отбор. Содержание жира в ядре и семянке, продуктивность, масса 1000 семян и лузжистость имеют низкую наследуемость [11; 12].

Цель наших исследований заключалась в оценке экспериментальных гибридов подсолнечника кондитерского направления по хозяйственно-ценным признакам и определении коэффициента доминирования признаков лузжистость и масса 1000 семян в F_1 .

Материал и методы. Исследование проводили на базе Федерального научного центра «Всероссийского научно-исследовательского института масличных культур» (ФГБНУ ФНЦ ВНИИМК) в 2020 г. Материалом послужили полученные в 2019 г. шестнадцать экспериментальных гибридов F₁. В качестве тестеров использовали ЦМС-формы материнских линий подсолнечника: ВК934 A, ВК905 A, ВК102 A, С Π_{13} 2190 A и двенадцать отцовских линий: ВК944, $\Pi_{17}1409$, $\Pi_{17}1276$, $\Pi_{17}1348$, $\Pi_{17}1369$, $\Pi_{17}1475$, $\Pi_{17}1465$, $\Pi_{17}1444$, $\Pi_{17}1412$, HCX6318-2, НСХ6318-3. Стандартом служил внесенный в Госсорткомиссии крупноплодный гибрид Катюша. Посев гибридов был произведен в оптимальные сроки ручными сажалками на 4-х рядных делянках, по 2 семянки в гнездо с последующей прорывкой. Густота стояния растений при посеве составляла 40 тыс. шт./га. Повторность опыта трехкратная, общая площадь делянки -24.5 м^2 , учетная -12.2 м^2 . Уход за посевами включал две междурядные культивации и ручные прополки по мере появления сорняков. В течение вегетации проводили фенологические наблюдения и биометрические осуществлялась способом отомкап измерения. Уборка урожая комбайнирования селекционным комбайном «Wintersteiger classic», оборудованным специализированной жаткой для уборки подсолнечника, при достижении растений технической спелости. В лабораторных условиях массу 1000 семян определяли по ГОСТ 12042 – 80 [13]. Лузжистость семян определяют путем обрушивания их ручным способом. Для этого из среднего образца семян, предварительно очищенных от примесей, брали по две навески в 6 г взвешивали их с точностью до 0,01 г. Семена каждой навески обрушивали с помощью пинцета. Отделенные от ядра плодовые оболочки (лузгу) взвешивали с точностью до 0,01 г с последующим расчетом среднего значения. Масличность семянок оценивали физическим методом с помощью ЯМР анализатора АМВ-1006М по ГОСТ Р 8.620-2006 [14]. Объемную массу (натуру) определяли по методике ВНИИМК [15]. Для определения натуры семян была использована пурка объёмом в 0,25 л. Статистическую обработку проводили по методике в изложении Б.А. Доспехова [16].

Оценку доминантности признаков в первом поколении гибридов проводили по формуле G.M. Beil, B.E. Atkins [17]:

$$hp = \frac{F1-mp}{P-mp},$$

где hp – коэффициент доминирования;

 F_1 – среднее арифметическое признака в первом поколении гибрида;

Р- среднее арифметическое значение признака более мощного родителя;

тр - среднее арифметическое значение признака между родителями.

Далее полученные значения hp классифицировали следующим образом:

при hp > 1 – положительный гетерозис;

при hp = 0.5 до 1.0 – положительное доминирование;

при hp < -0.5 до -1.0 — отрицательное доминирование;

при hp < -0,5 до 0,5 — промежуточное наследование;

при hp < -1,0 — отрицательный гетерозис.

Результаты и обсуждение. Результаты испытания гибридов подсолнечника в 2020 г. представлены в таблице 1. По урожайности семян 11 изученных гибридов превысили контроль за исключением четырех комбинаций, которые оказались на уровне стандарта (ВК905 А × $\Pi_{17}1369-2,38$ т/га, ВК934 А × $\Pi_{17}1276-2,29$ т/га, ВК905 А × $\Pi_{17}1412-2,56$ т/га, ВК905 А × $\Pi_{17}1412-2,68$ т/га). Наибольшая масса 1000 семян сформировалась у гибрида ВК905 А × $\Pi_{17}1465$ (105,9 г) при этом объёмная масса его составила 375 г/л, а урожайность 2,73 т/га. Гибрид ВК 934 А × $\Pi_{17}1465$ по массе 1000 семян уступил гибриду ВК905 А × $\Pi_{17}1465$ на 16,7

г, но урожайность его оказалась выше, чем у всех остальных гибридов (3,36 т/га). Лузжистость гибридов ВК934 $A \times \Pi_{17}1465$, ВК905 $A \times \Pi_{17}1465$ составила 24,6 и 25,2 % соответственно.

Таблица 1. **Характеристика гибридов крупноплодного подсолнечника по хозяйственно**ценным признакам

ЦЭБ ВНИИМК, Краснодар, 2020 г.

Гибрид	Урожайность,	Macca 1000	Натура, г/л	Лузжистость, %
	т/га	семян, г		
ВК934 A \times Л ₁₇ 1465	3,36	89,2	377	24,6
СЛ ₁₃ 2190 A × BK944	3,34	70,7	406	26,4
BK102 A × BK944	3,30	73,4	401	23,4
ВК934 A × Π_{17} 1475	3,01	70,7	384	29,2
BK934 A × BK944	2,97	75,8	371	28,5
BK905 A × I ₃ HCX6318-3	2,96	91,2	338	29,2
BK905 A × I ₃ HCX6318-2	2,89	80,5	349	30,6
ВК905 A × Л ₁₇ 1348	2,86	71,0	356	24,5
ВК905 A × Л ₁₇ 1444	2,74	84,7	402	33,1
ВК905 А × Л ₁₇ 1465	2,73	105,9	375	25,2
ВК905 A × Л ₁₇ 1409	2,71	77,5	355	29,0
ВК905 A × Π_{17} 1412	2,68	75,9	355	28,6
BK905 A × I ₃ HCX6318-1	2,56	91,3	333	30,5
ВК905 А × Л ₁₇ 1369	2,38	70,9	346	28,7
ВК934 А × Л ₁₇ 1276	2,29	72,3	335	32,3
Катюша (ВК905 А × ВК944 контроль)	2,47	90,4	373	28,9

 HCP_{05} 0,24

Так у гибридов С Π_{13} 2190 А × ВК 944, ВК102 А × ВК944 масса 1000 семян составила 70,7 и 73,4 г соответственно, а материнских линий: С Π_{13} 2190 А – 42,5 г и ВК102 А – 44,5 г. У отцовской линии ВК944 – 45 г. Нужно отметить, что линии: С Π_{13} 2190 А и ВК102 А относятся к масличным линиям, но в гибриде с крупноплодной отцовской линией ВК944 получили урожайность – 3,34 т/га и 3,3 т/га – это выше, чем у большинства изученных гибридов.

По лузжистости семянок отрицательный гетерозис наблюдали у четырнадцати гибридов подсолнечника, отрицательное доминирование у одного, промежуточное наследование также у одного гибрида (табл. 2). Коэффициент доминирования по всем 16-ти гибридным комбинациям варьировал от hp -0,1 до -52,3.

Таблица 2. Коэффициент доминирования у гибридов подсолнечника в F₁ по признаку лузжистость семян

ЦЭБ ВНИИМК, Краснодар, 2020 г.

Гибрид	Лузжистость, %			Коэффициент
т иорид	\$	3	F_1	доминирования (hp)
1	2	3	4	5
BK934 A \times Π_{17} 1465	32,4	30,0	24,6	-5,5
СЛ ₁₃ 2190 А × ВК944	23,4	30,2	26,4	-0,1
BK102 A × BK944	24,9	30,2	23,4	-1,6
ВК934 A \times Л ₁₇ 1475	32,4	30,9	29,2	-3,3
BK934 A × BK944	32,4	30,2	28,5	-2,5
BK905 A × I ₃ HCX6318-3	32,2	36,4	29,2	-2,4
BK905 A × I ₃ HCX6318-2	32,2	40,1	30,6	-1,4
ВК905 A × Π_{17} 1348	32,2	32,5	24,5	-52,3

Продолжение таблицы 2

1	2	3	4	5
ВК905 A \times Л ₁₇ 1444	32,2	49,4	33,1	-0,9
ВК905 А × Л ₁₇ 1465	32,2	30,0	25,2	-5,4
ВК905 А × Л ₁₇ 1409	32,2	35,2	29,0	-3,1
ВК905 A × Л ₁₇ 1412	32,2	34,0	28,6	-5,0
BK905 A × I ₃ HCX6318-1	32,2	41,0	30,5	-1,4
ВК905 А × Л ₁₇ 1369	32,2	43,1	28,7	-1,6
ВК934 А × Л ₁₇ 1276	32,4	42,4	32,3	-1,0
Катюша (ВК905 А × ВК944) st	32,2	30,2	28,9	-2,3

Для оценки вклада родительских форм в формирование лузжистости у семян F_1 вычислили коэффициенты корреляции между линиями и потомками. В ходе проведённых исследований определили достоверную положительную корреляцию между отцовскими линиями и гибридами r=0,77 (табл. 3).

Таблица 3. Коэффициенты корреляции между родительскими формами и гибридами подсолнечника по признаку лузжистость семян

Краснодар, ВНИИМК, 2020 г.

Признак	Материнская линия	Отповская линия	Гибрид
Материнская линия	1,00	-	-
Отцовская линия	0,32	1,00	-
Гибрид	0,45	0,77*	1,00

Примечание: * – значение достоверно на 5 %-ом уровне значимости

По признаку массы 1000 семян гибриды BK102 A \times BK944 (hp 114,6) и СЛ₁₃2190 A \times BK944 (hp 21,6) показатели положительный гетерозис (табл. 4). Положительный гетерозис наблюдали у 9-ти гибридов от hp 1,1 до 114,6. Положительное доминирование выделили у 4-х гибридов hp 0,6 до 1,0. Промежуточное наследование присутствовало в 3-х вариантах в пределах hp 0,1 до 0,4. Коэффициент доминирования по признаку массы 1000 семян среди гибридов F_1 подсолнечника, варьировал в пределах 0,1 до 114,6, что свидетельствует о широком диапазоне проявления данного признака у изучаемых гибридных комбинаций.

Таблица 4. Коэффициент доминирования у гибридов подсолнечника в F₁ по признаку масса 1000 семян

ЦЭБ ВНИИМК, Краснодар, 2020 г.

Гибрид	Масса 1000 семян, г			Коэффициент
т порид	9	3	F_1	доминирования
1	2	3	4	5
ВК934 A \times Л ₁₇ 1465	84,2	64,0	89,2	1,5
СЛ ₁₃ 2190 A × BK944	42,5	45,0	70,7	21,6
BK102 A × BK944	44,5	45,0	73,4	114,6
ВК934 A \times Л ₁₇ 1475	84,2	53,0	70,7	0,1
BK934 A × BK944	84,2	45,0	75,8	0,6
BK905 A ×I ₃ HCX6318-3	87,9	70,5	91,2	9,6
BK905 A × I ₃ HCX6318-2	87,9	47,0	80,5	1,4
ВК905 A × Л ₁₇ 1348	87,9	62,5	71,0	0,4
ВК905 A \times Л ₁₇ 1444	87,9	84,5	84,7	1,0
BK905 A × Π_{17} 1465	87,9	64,0	105,9	7,1
ВК905 A × Л ₁₇ 1409	87,9	76,3	77,5	2,3

Продолжение таблицы 4

1	2	3	4	5
ВК905 A × Π_{17} 1412	87,9	86,7	75,9	0,8
BK905 A × I ₃ HCX6318-1	87,9	85,7	91,3	2,0
ВК905 A × Л ₁₇ 1369	87,9	58,0	70,9	0,9
ВК934 A × Л ₁₇ 1276	84,2	63,2	72,3	0,1
Катюша (ВК905 А × ВК944) st	87,9	45,0	90,4	1,1

Определение корреляционных связей между изучаемыми признаками в 2020 г. позволило выявить ряд закономерностей (табл. 5). В ходе проведённых исследований определили положительную корреляцию r=0,62 между урожайностью и объёмной массой, между урожайностью и лузжистостью наблюдали отрицательную корреляцию r=-0,60.

Таблица 5. **Коэффициенты корреляции между изучаемыми признаками гибридов** подсолнечника

Краснодар, ВНИИМК, 2020 г.

Признак	Урожайность, т/га	Масса 1000 семян, г	Натура, г/л	Лузжистость, %
Урожайность, т/га	1	-	-	-
Масса 1000 семян, г	-0,09	1	-	-
Натура, г/л	0,62*	-0,08	1	-
Лузжистость, %	-0,60*	-0,02	-0,36	1

Примечание: * – значение достоверно на 5 %-ом уровне значимости

<u>Заключение.</u> В результате нашей работы выделили экспериментальный крупноплодные гибриды BK905 A \times $\rm Л_{17}1465$ превосходящий стандарт по массе 1000 семян и BK934 A \times $\rm Л_{17}1465$ по урожайности.

Таким образом, отцовскую линию $\Pi_{17}1465$ можно рекомендовать для дальнейшей селекционной работы, а гибриды с её участием оценить в новом полевом сезоне. В качестве родительских форм с целью получения крупноплодных гибридов подсолнечника возможно использовать линии разных направлений селекции. У большинства изученных гибридных комбинаций наблюдали положительный гетерозис и промежуточное наследование массы 1000 семян. Проявления этого признака у гибридов F_1 в большей степени зависело от генотипов конкретных родительских пар. По значению коэффициента доминирования у гибридов подсолнечника для лузжистости семянок в F_1 в основном преобладал отрицательный гетерозис.

Литература

- 1. Hladni N. et al. Correlation and path coefficient analysis for protein yield in confectionary sunflower (*Helianthus annuus* L.) // Genetika. − 2015. − T. 47. − № 3. − P. 811–818.
- 2. Hladni N. et al. Interrelationship Between 1000 Seed Weight with Other Quantitative Traits in Confectionary Sun ower // Ekin Journal of Crop Breeding and Genetics. -2016. -T. 2. $-N_{\odot}$. 1. -P. 51–56.
- 3. Hladni N., Miladinović D. Confectionery sunflower breeding and supply chain in Eastern Europe $//OCL.-2019.-T.\ 26.-P.\ 29.$
- 4. Пустовойт В.С.//Монография Подсолнечник // Науч. труды ВАСХНИЛ / Под общ. ред. акад. В. С. Пустовойта; Всесоюз. акад. с.-х. наук им. В. И. Ленина. Всесоюз. науч.-исслед. институт масличных культур им. В. С. Пустовойта. М.: Колос, 1975. С. 103.

- 5. Fick G.N. Breeding and Genetics // Sunflower Sci. and Technology. Maddison. Wisconsin. 1978. P. 280–338.
- 6. Marinkovic R. The mode of inheritance of seed yields and some yield components by crossbreeding different inbred lines of sunflower: дис. dissertation]. University of Novi Sad. Faculty. Novi Sad, 1984. P. 17–18.
- 7. Волгин В.В., Обыдало А.Д., Бочкарёв Б.Н. Наследование признака масса 1000 семян у межлинейных гибридов подсолнечника // Масличные культуры. 2018. №. 1 (173). С. 29—35.
- 8. Леонова Н.Н., Кириченко В.В., Сивенко А.А. Проявление эффекта гетерозиса и комбинационная способность линий подсолнечника кондитерского типа // Масличные культуры. 2015. №. 1 (161). С. 16–21.
- 9. Ульрих Н.Н. Научные основы очистки и сортирования семян // М.: ВИМ. 1937. С. 188.
- 10. Задорожная О.А. Наследование признаков семян подсолнечника с высоким и низким содержанием масла // Бюллетень Государственного Никитского ботанического сада. 2009. N_2 . 99. C. 38–41.
- 11. Вольф В.Г., Касьяненко А.Н. Наследование признаков в популяции подсолнечника // Селекция и семеноводство. К.: Урожай. 1972. № 21. С. 37–42.
- 12. Пустовойт Г.В. Развитие идей В.С. Пустовойта в селекции и семеноводстве подсолнечника на современном этапе // Сельскохозяйственная биология. -1986. -№ 1. С. 71-76.
- 13. ГОСТ 12042-80 Методы определения массы 1000 семян. // Межгосударственный стандарт. Семена сельскохозяйственных культур. М.: Стадартинформ, 2011. С. 116–118.
- 14. ГОСТ Р 8.620-2006 Методика выполнения измерений масличности и влажности методом импульсного ядерного магнитного резонанса. М.: Стадартинформ, 2010. С. 230–231.
- 15. Пустовойт В. С. Практическое руководство по селекции масличных культур. М.: Колос, 1967. C.351.
 - 16. Доспехов Б. А. Методика полевого опыта // M.: Колос. 1985.— C. 351.
- 17. Beil G. M., Atkins R. E. Inheritance of quantitative characters in grain sorghum: дис. Iowa State University, 1963. Vol. 39. P. 345–358.

THE EVALUATION OF CONFECTIONERY SUNFLOWER HYBRIDS BY ECONOMIC CHARACTERS

Fukalova M.S., Bochkaryov B.N.

As a result of the evaluation, we identified experimental hybrids VK905 A \times L₁₇1465 and VK934 A \times L₁₇1465, which exceeded the standard by the thousand-seed weight and by the productivity, respectively. In most part of the studied hybrid combinations, we observed the positive heterosis and the positive dominance of the thousand-seed weight; but the negative heterosis predominated in case of seed huskness.

Key words: breeding, sunflower, hybrids, productivity, confectionery, thousand-seed weight, huskness, bulk weight (natural weight).